Capturing the radical ion-pair intermediate in DNA guanine oxidation
نویسندگان
چکیده
Although the radical ion pair has been frequently invoked as a key intermediate in DNA oxidative damage reactions and photoinduced electron transfer processes, the unambiguous detection and characterization of this species remain formidable and unresolved due to its extremely unstable nature and low concentration. We use the strategy that, at cryogenic temperatures, the transient species could be sufficiently stabilized to be detectable spectroscopically. By coupling the two techniques (the cryogenic stabilization and the time-resolved laser flash photolysis spectroscopy) together, we are able to capture the ion-pair transient G+•⋯Cl- in the chlorine radical-initiated DNA guanine (G) oxidation reaction, and provide direct evidence to ascertain the intricate type of addition/charge separation mechanism underlying guanine oxidation. The unique spectral signature of the radical ion-pair G+•⋯Cl- is identified, revealing a markedly intense absorption feature peaking at 570 nm that is distinctive from G+• alone. Moreover, the ion-pair spectrum is found to be highly sensitive to the protonation equilibria within guanine-cytosine base pair (G:C), which splits into two resolved bands at 480 and 610 nm as the acidic proton transfers along the central hydrogen bond from G+• to C. We thus use this exquisite sensitivity to track the intrabase-pair proton transfer dynamics in the double-stranded DNA oligonucleotides, which is of critical importance for the description of the proton-coupled charge transfer mechanisms in DNA.
منابع مشابه
Protein-DNA charge transport: redox activation of a DNA repair protein by guanine radical.
DNA charge transport (CT) chemistry provides a route to carry out oxidative DNA damage from a distance in a reaction that is sensitive to DNA mismatches and lesions. Here, DNA-mediated CT also leads to oxidation of a DNA-bound base excision repair enzyme, MutY. DNA-bound Ru(III), generated through a flash/quench technique, is found to promote oxidation of the [4Fe-4S](2+) cluster of MutY to [4F...
متن کاملRapid radical formation by DNA charge transport through sequences lacking intervening guanines.
Using the flash-quench technique to probe DNA charge transport in assemblies containing a tethered ruthenium intercalator, the kinetics and yield of methylindole radical formation as a function of DNA sequence were studied by laser spectroscopy and biochemical methods. In these assemblies, the methylindole moiety serves as an artificial base of low oxidation potential. Hole injection and subseq...
متن کاملDNA mediated charge transport: characterization of a DNA radical localized at an artificial nucleic acid base.
DNA assemblies containing 4-methylindole incorporated as an artificial base provide a chemically well-defined system in which to explore the oxidative charge transport process in DNA. Using this artificial base, we have combined transient absorption and EPR spectroscopies as well as biochemical methods to test experimentally current mechanisms for DNA charge transport. The 4-methylindole radica...
متن کاملPhotochemical degradation of azure-b with sulphate radical ion generated by peroxydisulphate ion with cupric ion
In this paper, the photochemical degradation of azure-b by Cu2+/S2O82− process has beenpresented. Cu2+ as photocatalyst and S2O82− ion as photooxidant used in this process. Atextremely low concentrations, cupric ion showed true catalytic activity in the overall process.The influence of various parameters on the performance of the treatment process has beenconsidered, such as pH, concentration o...
متن کاملInfrared characterization of the guanine radical cation: finger printing DNA damage.
Oxidation of DNA represents a major pathway of genetic mutation. We have applied infrared spectroscopy in 77 K glass with supporting density functional theory (DFT) calculations (EDF1/6-31+G*) to provide an IR signature of the guanine radical cation G(+*), formed as a result of 193 nm photoionization of DNA. Deprotonation of this species to produce the neutral radical G(-H)(*) does not occur in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 3 شماره
صفحات -
تاریخ انتشار 2017